CUPRINS

Cap. 1 Noţiuni fundamentale 15
1.1 Introducere 15
1.1.1 Terminologie 15
1.1.2 Scurt istoric 16
1.2 Modele de referință pntru rețelele de calculatoare 18
1.2.1 Modelul arhitectural OSI 18
1.2.1.1 Nivelul fizic 19
1.2.1.2 Nivelul legătură de date 20
1.2.1.3 Nivelul rețea 20
1.2.1.4 Nivelul transport 21
1.2.1.5 Nivelul sesiune 22
1.2.1.6 Nivelul prezentare 22
1.2.1.7 Nivelul aplicație 23
1.2.1.8 Transferul de date între două maşini gazdă 23
1.2.2 Modelul arhitectural TCP/IP 24
1.2.2.1 Nivelul acces la rețea 25
1.2.2.2 Nivelul internet 25
1.2.2.3 Nivelul transport 25
1.2.2.4 Nivelul aplicaţie 25
1.3 Clasificarea rețelelor de calculatoare 26
1.3.1 După aria de acoperire geografică 26
1.3.2 După topologia fizică 26
1.3.3 După topologia logică 28
1.3.4 După drepturile calculatoarelor din reţea 28
1.3.5 După rata de transfer 29
1.3.6 După modul în care se controlează accesul la mediu 29
1.3.6.1 Acces controlat static 29
1.3.6.2 Acces controlat dinamic 31
1.3.6.3 Acces controlat aleator 32
1.3.7 După tipul de conexiune WAN 32
1.3.7.1 Conexiune privată 36
1.3.7.1.1 Conexiune dedicată 36
1.3.7.1.2 Conexiune bazată pe comutare 37
1.3.7.2 Conexiune publică - Internet 45
1.3.7.2.1 Broadband/VPN 45
1.3.7.2.2 Broadband prin cablu şi linie T1 48
1.3.7.2.3 Broadband Wireless 49
Cap. 2 Aspecte privind rutarea IP 51
2.1 Introducere 51
2.2 Adresarea IPv4 51
2.2.1 Aplicaţii 55
2.2.2 Adrese IPv4 rezervate 58
2.2.3 Utilitarul route 59
2.2.4 Subalocarea unei adrese IPv4 (Subnetting) 61
2.2.5 Tehnica VLSM 67
2.2.5.1 Agregarea rutelor 76
2.2.6 Adresarea CIDR 79
2.3 Rutarea în rețelele IP 81
2.3.1 Consideraţii de bază 81
2.3.2 Soluții arhitecturale pentru rutere 90
2.3.2.1 Arhitectură centralizată bazată pe CPU 90
2.3.2.2 Arhitectură centralizată bazată pe circuite ASIC 91
2.3.2.3 Arhitectură distribuită bazată pe procesoare 91
2.3.2.4 Arhitectură distribuită bazată pe circuite ASIC 92
2.3.3 Funcţii de bază ale ruterelor 92
Cap. 3 Protocoale de rutare 99
3.1 Protocolul EIGRP 99
3.1.1 Componentele EIGRP 99
3.1.2 Pachete EIGRP 101
3.1.2.1 Formatul pachetelor EIGRP 103
3.1.3 Caracteristici EIGRP 106
3.1.3.1 Protocolul RTP 106
3.1.3.2 Reactualizări tip Bounded Updates 107
3.1.3.3 Protocolul Hello 107
3.1.3.4 Distanța administrativă 108
3.1.3.5 Autentificarea EIGRP 109
3.1.3.6 Configurarea protocolului EIGRP 110
3.1.3.7 Metrica EIGRP 111
3.1.4 Algoritmul DUAL 113
3.1.4.1 DUAL: Concepte preliminare 113
3.1.4.2 Paşii algoritmului DUAL 115
3.1.5 Aplicaţie EIGRP 118
3.1.5.1 Prezentare generală 118
3.1.5.2 Proiectarea schemei de adresare IP 119
3.1.5.3 Configurarea rețelei şi verificarea procesului de rutare 120
3.1.5.4 Verificarea conectivităţii 132
3.2 Protocolul OSPF 135
3.2.1 Concepte OSPF 136
3.2.1.1 Operaţii OSPF 136
3.2.1.2 Vecini și adiacențe 137
3.2.1.3 Descoperirea vecinilor 138
3.2.1.4 Tipuri de rețele OSPF 139
3.2.1.5 Rutere DR şi BDR 142
3.2.2 Interfețe OSPF 147
3.2.2.1 Structura de date a interfeței 147
3.2.2.2 Interfaţa OSPF ca un automat finit 150
3.2.2.3 Vecinii OSPF 152
3.2.2.4 Procesul de inundare (Flooding) 162
3.2.2.5 Zone OSPF 164
3.2.2.6 Tipuri de rutere OSPF 165
3.2.2.7 Baza de date a stării legăturilor 166
3.2.2.7.1 Tipuri LSA 169
3.2.2.8 Tabela de rutare 172
3.2.2.8.1 Tipuri de destinaţie 173
3.2.2.8.2 Tipuri de rute 174
3.2.2.8.3 Tabelul de căutare a rutei 175
Cap. 4 Rutarea pachetelor IP în Linux/Unix 176
4.1 Tabela de rutare 176
4.2 Definirea rutelor statice 179
4.2.1 Comanda route 179
4.2.2 Utilitarul ip din pachetul iproute2 182
4.2.2.1 Prezentare generală 182
4.2.2.2 Gestionarea interfețelor 183
4.2.2.3 Gestionarea tabelei de rutare 184
4.2.3 Definirea rutei default 187
4.3 Pachete de rutare în Linux/Unix - Zebra/Quagga 188
4.3.1 Caracteristici Zebra/Quagga 188
4.3.2 Moduri de lucru 189
4.3.3 Arhitectura pachetului Quagga 190
4.3.4 Platforme suportate 191
4.3.5 Instalare Zebra/Quagga 191
4.4 Configurare Zebra/Quagga 193
4.4.1 Configurarea de bază a managerului zebra 193
4.4.2 Configurarea avansată a managerului zebra 193
4.4.3 Daemonii pachetului Quagga 197
4.4.3.1 Daemonul zebra 197
4.4.3.2 Daemonul ripd 199
4.4.3.3 Daemonul ospfd 205
4.4.3.4 Daemonul isisd 215
4.4 Configurarea unui server DNS 216
4.4.1 Serviciul de nume si resolverul de nume 216
4.4.2 Daemonul named şi serverele de nume 216
4.4.3 Reverse DNS 218
Cap. 5 Rutare statică şi dinamică 223
5.1 Prezentarea studiului de caz 223
5.2 Configurarea şi administrarea switch-ului layer 3 227
5.2.1 Configurarea parametrilor de rețea 227
5.2.2 Proiectarea si configurarea VLAN-urilor 229
5.3 Rute statice 231
5.3.1 Configurarea ruterelor 231
5.3.2. Verificarea tabelelor de rutare 236
5.3.3 Testarea conectivităţii 239
5.3.4 Configurarea dial-in 241
5.3.5 Configurarea dial-up 242
5.3.6 Testarea conectivităţii dial-up 244
5.4 Protocolul RIP 245
5.4.1 Configurarea protocolului RIP pe rutere 245
5.4.2 Verificarea protocolului RIP pe rutere 247
5.4.3 Verificarea tabelelor de rutare 249
5.4.4 Verificarea conectivităţii 250
5.4.5 Depanarea protocolului RIP 253
5.4.6 Testarea convergenței rețelei 254
5.4.7 Afişarea informațiilor cu privire la protocoalele de rutare 260
5.4.8 Afişarea configuraţiilor finale ale ruterelor 263
5.4.9 Configurarea protocolului RIP pe Gateway 267
5.5 Protocolul OSPF 268
5.5.1 Dezactivarea protocolului RIP 269
5.5.2 Configurarea protocolului OSPF pe rutere 269
5.5.3 Verificare OSPF 274
5.5.4 Verificarea conectivităţii la nivelul rețelei 300
5.5.5 Întreruperea unei legături 303
5.5.6 Definirea rutei default 309
5.5.7 Autentificarea OSPF 312
5.5.8 Configuraţiile complete ale ruterelor 319
5.6 Concluzii 325
Cap. 6 Rutare OSPF Single-Area 326
6.1 Prezentarea studiului de caz 326
6.2 Configurarea primară a ruterelor 329
6.3 Verificarea conectivităţii directe 333
6.4 Configurarea OSPF 336
6.4.1 Configurarea ruterelor Cisco 336
6.4.2 Configurarea ruterelor Zebra/Quagga 340
6.5 Verificarea procesului de rutare OSPF 342
6.6 Afişarea configuraţiilor ruterelor 362
6.7 Verificarea conectivităţii după convergenţa OSPF 371
6.8 Concluzii 394
Cap. 7 Rutare multiprotocol cu redistribuirea rutelor 395
7.1 Prezentarea studiului de caz 395
7.2 Consideraţii teoretice 401
7.2.1 Metrici 401
7.2.2 Distanţa administrativă 402
7.2.3 Configurarea redistribuirii 403
7.2.3.1 Redistribuirea în IGRP şi EIGRP 403
7.2.3.2 Redistribuirea în OSPF 405
7.2.3.3 Redistribuirea în RIP 407
7.2.3.4 Redistribuirea în IS-IS 407
7.3 Configurarea de bază a echipamentelor 408
7.3.1 Ruterele Cisco 408
7.3.2 Switch-urile Layer 3 412
7.3.3 Ruterele Zebra 415
7.3.4 Configurarea protocolului RIP 416
7.3.5 Configurarea protocolului EIGRP 417
7.3.6 Configurarea protocolului OSPF 419
7.3.7 Configurarea redistribuirii 421
7.3.7.1 Redistribuirea rutelor statice în RIP 423
7.3.7.2 Redistribuirea bidirecțională a rutelor între RIP şi EIGRP 424
7.3.7.3 Redistribuirea bidirecțională a rutelor între RIP și OSPF 427
7.3.7.4 Redistribuirea bidirecțională a rutelor între OSPF şi EIGRP 427
7.3.7.5 Afişarea tabelelor de rutare de la toate ruterele 427
7.3.7.6 Afişarea configurării fiecărui ruter 431
7.3.8 Testarea conectivităţ̧ii 439
7.3.9 Liste de acces 442
7.3.9.1 Exemplul 1 - Listă de acces standard 442
7.3.9.2 Exemplul 2 - Listă de acces extinsă 444
7.4 Concluzii 447
Cap. 8 Rutare OSPF Multi-Area 448
8.1. Prezentarea studiului de caz 448
8.2 Consideraţii teoretice 454
8.2.1 Caracteristici ale protocolului OSPF 454
8.2.2. Tipuri de rutere 454
8.2.3 Tipuri de zone 455
8.2.3.1 Definirea unei zone Stub 456
8.2.3.2 Definirea unei zone TS (Totally Stub) 457
8.2.3.3 Definirea unei zone NSSA (Not So Stubby Area) 457
8.2.3.4 Definirea unei zone NSSA Totally Stub 458
8.2.3.5 Comparaţie între tipurile de zone OSPF 458
8.2.4 Legături virtuale 459
8.2.5 Tipuri de rute OSPF 459
8.3 Configurarea ruterelor 460
8.3.1 Configurarea OSPF pentru ruterele din zona 0 464
8.3.2 Configurarea OSPF pentru ruterele din zonele 1 si 2 466
8.3.3 Configurarea RIP pentru ruterul ASBR 468
8.3.4 Configurarea OSPF pentru ruterul ASBR 468
8.3.5 Redistribuirea protocolului RIP în OSPF 468
8.4 Verificare OSPF 468
8.4.1 Comanda show ip route / route $-n$ 468
8.4.2 Comanda show ip ospf interface 473
8.4.3 Comanda show ip ospf neighbour 479
8.4.4 Comanda show ip ospf database 481
8.5 Afişarea configurării ruterelor 488
8.6 Testarea conectivităţii 493
8.7 Liste de acces 496
8.7.1. Exemplul 1 - Listă de acces standard 496
8.7.2 Exemplul 2 - Listă de acces extinsă 498
8.8 Concluzii 501
Anexă IOS-uri Cisco: Comenzi RIP/EIGRP/OSPF/BGP 502
Bibliografie 505

