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Public-key systems (two-key or asymmetric) differ from conventional systems in that
there is no longer a single secret key shared by a pair of users. Each user has his proper
cryptographic key. The key of each user is divided into two portions: a private component
and a public one. The public component generates a public transformation, £, and the
private component generates a private transformation, D. F and D can be termed encryp-
tion and decryption functions, respectively. In a system we may have D(E(MM)) = M,
E(D(M)) = M or both.

The cryptographic importance of the Elliptic Curve Public Key Cryptosystems (ECPKC)
consists in the difficulty to determine discrete logarithms over extentions of finite fields {7].
This is much harder than factorization of integers or calculating discrete logarithms in Fq-
Another most important aspect consists in the forms for the private keys and for the public
ones: the private keys are ordinary integers and the public keys are points on an elliptic
curve. Elliptic curve systems are very advantageous for applications with smart cards and
in distributed systems, where computational power and integrated circuit space are limited,
because computations are easily performed and bandwidth requirements are minimal.

The paper presents a proposal for the implementation of privacy enhancement in a
packet-switched local area network, using Elliptic Curve Public-Key Cryptography for key
management and authentication.

For computing in finite extensions over finite rings we have used the ZEN-new toolbox
[5]: there are some computing routines implementing the group law defined for an elliptic
curve. We have implemented in ZEN the conversions between bit string, integer, point-to-
octet string, octet. string-to-point, field element and point of the elliptic curves.

¢

1. A Short Presentation of the Public Key Cryptosystems

The procedures of encryption and decryption, according to some Public Key
Cryptosystems (PKC) [2], contain the public algorithms, noted by E and D. These
are initialized by the public key, Kel, and by the secret key, KdI, for each user
of the system, I. The keys Kel and A'dl become from the initialization key, Kil,
after the application of ' and G algorithms. The emitter A receives the cryptogram
C = E(M) = Eg.p(M) on the basis of the public key KeB and of E algorithm,
where M is the plaintext. The receiver, B,works with the algorithm D under the
action of the secret key, K'd B. Because the encryption key is a public one and anyone
can use it, through such an hinplementation can’t be done also the authentication of
the send message. ‘
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adaptively chosen ciphertext attacks depending on the enemy access to the decryption
algorithm, before or after the arrival of the ciphertext. For each kind of attack there
are developed specific security actions [13]. The adaption of some security actions
against the chosen plaintext attacks and chosen ciphertext attacks being used is
necessary for PKC.

The security services of our paper are authentication, secrecy, integrity, nonre-
pudiation.

a) Authentication refers to verification of the identity of the sender or receiver of
a communication.

b) Secrecy refers to protection against interception of data.

¢) Integrity refers to protection against manipulation of data.

d) Nonrepudiation refers to protection against denial of sending (or possibly re-
ceipt) of a message.

2. Elements of Elliptic Curve Algebra in Finite Fields

Let be F, a finite field containing q elements, with ¢ prime number. For K = F,

we note with & its algebraic closure: X = {J Fym, where m is a nonnegative
m>1

integer number. Let be K3 = K x K x K. The projective plane P*(K) is the set

of the equivalence classes of the relation ~ which operate on X*\{0,0,0}, where

(X1,Y1,21) ~ (X3, Yz, Z2), if and only if exists A € K* so that X; = AX;, Y1 = AYa,

Z, = AZ,. We note the equivalence classes which contain (X, Y, Z) through (X :Y: Z).
A homogeneous equation of third degree with the form

(1) Y2 Z+ i XYZ +asYZ% = X34+ a,X?Z + ay, X Z* + asZ°,

where ;. az, a3, a4, ag € K, is called the Weierstrass equation.

The algebraic curve according to this equation can be:

a) smooth or nonsingular, if for all points P = (X : Y : Z) € P*(K) which fulfil
the relation F(X,Y,Z) = 0 at least one of the partial derivatives 0F/9X, 0F/0Y,
0F/0Z is different from zero in the point P;

b) singular, if all partial derivatives are null in the points noted P, where P is
called singular point. According to equation (1) there is a point on the algebraic
curve with Z = 0, noted O = (0 : 1 : 0), called point at infinity. We show the
equation (1) in affine coordinates based on relations ¢ = X/Z, y = Y/Z and we get:

(2) y? + ayzy + asy = 2% + a20® + a4z + a6

An elliptical curve E (called algebraic curve of first genus) is formed by the
solutions of the equation (2), according to a smooth curve from the affine plane
PHK) = K x K, together with the point at infinite, noted O, expressed in affine
coordinates.

Lét be the points P = (z1,11), @ = (z2,12), P,@ € E. We define the algebraic
operation ¢+ : EXE — E, P4+ @ = R, with R = (z3,y3), R € E. The algebraic
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compromised; b) an individual user lasses control over algorithms used.

2. In end to end encryption a message is encrypted and decrypted only at end
points. Some address information (data link leaders) must be left unencrypted to
allow nodes to route packets. High-level network protocols must be augmented with
a separate set of cryptographic protocois.

In terms of OSI (Open System Interconnection) model encryption can occur at
various levels: application, presentation, network, transport. Integration at the ap-
plication layer gives the individual user complete control over the algorithms used.

3.1. Cryptosystem with Public Keys

EPPKEC is an Encryption Protocol with Public Keys that uses Elliptic Curves.
It generates the cryptogram, (', for the message, M, both of them considered as
sequences of octets. Users A and B of the system know SECP and the format mode
of the message, M, operation by which it is obtained m* := F(M): {M} = Tyq,)-
{M} is the set of the messages, M, and 2 {01} is the set of binary sequences. The
users A and B choose at random and each of themn keep secretly the integer number
d4, respectively dg, with d4,dg € [2,r — 2]. They apply the procedure CdP and
each of them obtain by computation the points Q4 = da @ P = (2ga4,yga) and
(p = dype P = (1gp,ygn) of the elliptic curve. The binary representations Q% and
(0%, obtained following the application of one of the procedures CPBTC or CPBFTC,
depending on the situation in which it is used or not a compression technique, are
registered in a public register, PR. We note with t the number of bits corresponding
to the binary transformation of an element of the field 7, and with [ the number of
octets, [ = [[t/8]]. We note with [[z]] the smallest integer great or equal with z. The
message M, that is to be sent secretly from A to B, contains at least [ — 2 octets. We
note the number of octets of the message M with ||M||. EPPKEC (Fig.1) contains
three phases: of format of the message M, of encryption and of transmitting of the
cryptogram C, of decryption of the received cryptogram.

EPPKEC
a) The format Phase of the Message
1. To message M a number of I — 2 — ||[M|| octets, that have alternatively the values FF and
00, is associated on the left. A sequences of octets, noted with M, of length I — 1 octets, of the size
M’ = (00/F F}||00||M is obtained.
2. The user A:
2.1. Chooses at random an integer number e4 € [2,7 — 2].
2.2. Read @} from PR and apply one of the procedures CBPTC or CBPFTC, to obtain the
point @p of the elliptic curve.
2.3. Apply the procedure CdP and compute the points R4 and Sa:Ra=(ZRra,yra) :=e€s0P;
54 =(254,Ys4) = ea0Qp. ,
2.4. Apply one of the procedures CPOTC or CPOFTC and receive the sequence of octets
Ry that correponds to R4.
2.5. Apply the procedure CDECFB and obtain the binary representation z3, of z54.
2.6. Obtain in two steps a binary sequence, m*, of ¢ bits:
2.6.1. Apply the procedure CDECFB and receive the binary representation (M')* of M.
2.6.2. Compiete (M')* with 8 — 8! + ¢ bits of 0 on the left.
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b) The Encryption and Transmission of the Cryptogram C Phase
1. Compute C'R* = (m* + z%,) mod 2.
2. Apply the procedure CDBO and obtain the sequence of octets C'R**.
3. Find the cryptogram C by a concatenation operation: C' = R}*||CR*".
4. The user A transmits the cryptogram C to B user.
If compression techniques TCPF, or TCPF3« are used, the cryptogram C' is represented on
2l + 1 octets and, to the contrary, on 3! +{ octets.

EPPKEC

end, € [2, r-2] ¥ e dc2.r2]
d,e P=Q, >0, dB.P=QBDQB*

ety

l"1’=((00/I’-'F)Lz-llfrfll)!:OOHIWS -2) .
=>m'=0s_y, (M) d

0 <=0y
e,eQp=S5, :)XZA
e,*P=R, :‘>RA"
CR'=(m'+x;1 )mod.2 = CR”
C=R," ||CR"=C,,, sau Cy,, *""

o

*
(X, +CR)mod.2 = m' =
=> M)’
MY’ oM |, => M< -2

Fig. 1.- Encryption protocol with public keys that uses elliptic curves.

c) The Decryption Phase of the Received Cryptogram

The user B:

1. If the most in the left bit of the cryptogram C, termed with BS(C), is 1, then the cryptogram
(' corresponds to [ 4 1 octets in the left (note S;+1(C)), and to the contrary to 2[ + [ octets in
the left (note Sy4/(C')). This depends on the using or not of some compression techniques in the
encryption operation.

2. Apply the procedure COP and from R is received the point R4 = (2ga, yra), that belongs
to the elliptic curve.

3. Apply the procedure CDOB and from CR** is received the binary sequence C'R*.

4. Apply the procedure CdP and compute dp « Rq = Sa4 = (z54,Y54)-

It is checked if dp e Ry =dpe(eseP)=eso(dpeP)=ecs9Qp =S4 = (254, ysa)-

5. Apply the procedure CDECFB and obtain the binary representation, 254, for 25a4.

6. From (25, + CR*) mod 2=m" it results (M’)* by doing away with the 8 — 8/ 4 ¢t most bits
that are in the left.

7. Apply the procedure CDBO for (M’)* and obtain M’ as a sequence of I — 1 octets.

8. Being given the known structure of M’, it is obtained the message M, that contains at the
most | — 2 octets.

End.
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4. Conclusions

For the point P(xp,yp) who is situated on the elliptic curve E/F,, ¢ = 2™,
E/F, : y* + ay = 2° + a»2? + as, is possible to define the gp : §p = 0, for zp = 0
and §p = RM(ypxp'), for zp # 0. With 25! we have noted the inverse element for
rp in the field F, and RM(z) offer the right most bit of the field element z. Over
the F,. ¢ = 2™. with an optimal normal basis representation, a point compression
technique is used: the point P = (zp,yp) represents by storing only the z-coordinate
ap and the gp. For computing in finite extensions over finite rings we have used the
ZEN-new toolbox.

The exponential cryptographic algorithms attain their security through the com-
bined use of exponentiation modulus (with digital signature) and the difficulty of
inventing the strong pseudo-random string generator. G. The total cost for the algo-
rithm will be O(n?) elementary operations because each multiplication in finite fields
requires n? elementary operations, and every exponentiation requires O(n) multipli-
cations. The best algorithm known for the discrete logarithm problem [1] in Z7 has
an asymptotic running time of exp[(1.923 + O(1)](log q)*/3(log log ¢)*/>.

For the elliptic curve public keys cryptographic algorithms the cryptographic im-
portance consists in the difficulty to determine discrete logarithms over finite fields.
Another most important aspect consists in the forms for the private keys and the
public ones. The private keys are ordinary integers and the public keys are points
situated on an elliptic curve. Elliptic curve systems are very avantageous for applica-
tions with smart cards and in distributed systems, where computational power and
integrated circuit space are limited.
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COMUNICATIE SIGURA BAZATA PE CRIPTOSISTEME CU
CHEI PUBLICE CONSTRUITE PE CURBE ELIPTICE (1)

(Rezumat)

Sistemele cu chei publice {cu doud chei sau asimetrice) diferd de cele conventionale prin faptul
c& nu existi o singurd cheie secretd, partajatd un timp indelungat, de o parte din utilizatori.
Cheia fiecirui utilizator congine doui componente: una privati gi alta publici. Componenta publici
initiazi o transformare publici, E, iar componenta privati initiaza o transformare privati, D. E
si D pot fi identificate ca functii de criptare si decriptare. Intr-un astfel de sistem trebuie sd fie
indeplinite cel putin una din relatiile D(E(M)) = M, E(D(M)) = M, unde M este mesajul
transmis.

Importanta criptografici a criptosistemelor cu chei publice construite pe curbe eliptice constd in
dificultatea de a calcula logaritmi discreti peste extensii ale unor campuri finite {7]. Aceasta este o
operatie mult mai complex3 dect factorizarea unor numere intregi sau calculul logaritmilor discreti
in Fy. Un alt avantaj foarte important este conferit de structura cheilor publicd gi privatd; cheia
privatd este un simplu numa3r intreg in timp ce cheia publicd este un punct situat pe o curbd eliptici.
Sistemele criptografice construite pe curbe eliptice sunt indicate pentru aplicatii care folosesc cartele
inteligente i in sistemele distribuite. unde sunt limitate puterea de calcul i spatiul fizic necesar
implement&rii.

Se prezintd un sistern cu un grad marit de secretizare a informatiei transmise intr-o reea locala
de calculatoare cu comutare de pachete, folosind metode criptografice dezvoltate pe curbe eliptice,
in scopul administrarii cheilor i autentificirii mesajului transmis.

Pentru calculul in extensii finite, construite peste inele finite, s-a folosit toolbox-ul ZEN; acesta
prezinti rutine de calcul ce implementeazd grupul finit de tip law pentru o curba elipticd. S-au
implementat in ZEN conversiile dintre diferite forme de reprezentare a informatiei: numair intreg,
sir de biti, sir de octeti, punct al unei curbe eliptice, element al unui camp finit.



