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Abstract. The purpose of tlie paper is to present an algorithm, based on the Finite Differences 
Method (FINDI), for the computation of the electric potential on the three spatial directions 
around a seagoing ship. 

1. INTRODUCTION 

The electric field of a sea-going ship assumes a slow rate variation in time, if energy conversions 
are negligible. The equations with partial derivates which describe the main magnitudes are of 
elliptical type. Thus, the study of the field phenomena is processed in the framework of the 
scalar potential theory. 
A potential field having the divergence of the state vector equally zero in all the points P, in a 
domain f2, namely: 

(divE),. = 0, VPefii (1) 

is called a "Laplace" field in the domain Q. 
The potential function V (defined by E= - gradV) verifies in D. the equation: 

A V = 0, called Laplace equation. (2) 

In order to solve equation (2), the boundary conditions of the problem have to be find. There are 
many methods specialised to solve this kind of problems. For its simplicity and efficiency, "The 
Finite Differences Method" suits very well to such a problem. Besides, there is available a huge 
amount of computer code to solve it. 
The "Finite Differences Method" replaces the equations with partial derivates (describing a 
problems with boundary conditions) by equations with finite differences. The result of this 
method consists of a series of digital data, representing the potential values in the nodes of a 
network (applied to a chosen domain). These digital data are obtained by solving a linear 
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algebraic system, the discrete counterpart of the equations with partial derivates iti the nodes of 
the network. 
The accuracy of the method depends of: 
- the discrete network; 
- the type of discretization for the equations with partial derivates; 
- the precision of approximation for the boundary conditions; 
- the computation techniques (methods and equipment). 
In order to approximate a Laplace equation by the "Finite Differences Method" we choose a 
discrete model in a three-orthogonal Cartesian coordinates system formed by cubic network. 

2. THE ELECTRIC POTENTIAL FOR BOUNDARY CONDITIONS OF FIRST 
TYPE (DIRICHLET) 

The physical measurements were picked-up on a seagoing ship of small dimensions, having the 
immersed bull with the configuration shown in fig. 1. The potential measurements, on the 
boundary and inside the chosen domain, were performed offshore of the Black Sea; in the region 
of Mangalia city. These determinations were necessary in order to get the potential values and to 
use them as boundary conditions in a Dirichlet problem. 
It can be notice that the studied domain stretches between the frames C39 and C47, having the 
dimensions from fig. I. The cross plane of the ship, determined by the plane yoz and the hull is 
approximated by a rectangle 3 x I m. 

X | nt) 

A'JOO 

 Vl.CVVL). 
''[in: 

A-IM 

Fig. 1 The immersed bull of the ship and the measure domain fii, 

The index of any point A in fig. 1 indicates the coordinates of A in the 3D space. The values of 
the potential V(x,y,z), inside the chosen domain, was determined by solving the differential 
equation (2).  For this, we have used an approximation with seven inner nodes in the 3D space. 
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These nodes are distributed as shown in fig.2, i.e., a discrete cubic network with a characteristic 

structure R7. 
In fig.2b it can be seen that the node A„ (x,y,z) is surrounded by the nodes A, ... A6   I he same 
notation is preserved for any inner node. 
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Fig. 2 The discrete cubic network : 
a) the discretization of the chosen domain 
b) the characteristic structure R7 

In the case of first type boundary conditions the nodes A0 will be located only inside the chosen 
domain . If we develop the potential V (x,y,z) after Taylor formula, around A0 (x,y,z), the result 

is: 

V(x„+h,   yo+h,   z„+h)  =   V(x„,   y„,   z„)  +  Z   l/m!-[(r?V/0x)A(,h+(aV%)A(,h+((-)V/0x)Aüh   + 

+ (f1V/^)A(,h]m = V„ + (dV/dxhlV/dy+<W/f)7^h +  \/2\(cfW/dx2+(fV/dy2+cfW/dz2)Mvh2 + 

-i-    2/2!- (<l\/nxdyhl1V/dx<lzh^V/dyd7.)w'h
1   +    l/3!(c?V/rV+3*V/r/yWv/fe')A0 • lv    + 

+ 3/3\(<f V/^xrV+fVW/fhi(lz2+if V/dxzdy H?V/fa2dz+(fV/dz2dy+&V/dy2dz )A0-h
s + ...   (3) 

From a practical point of view, the accuracy of the computation is satisfactory, even without 
taking into account the terms of above second degree. In particular, the following equations 
with partial deiivates are successively obtained: 
•    for the node A, (x0, y() - h, z()): 

V, = Vo - (PV/r)y)A(fh + l/2H^V/fy2)A,,'h2 - ... (4) 
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• for the node A2 (x0, y()+li, z„): 

V2= V„ + (f)V/fy)Ao-li + l/2!-((fV/rV)Ao'h2 + ■■■ (5) 
• for the node A.* (x(), yo, z,( -li): 

V=V„ - (f)V/fe)A,rh + l/2!'(52V/dz2)A0'h
2 -... (6) 

• for the node A4 (x0, y0, zu + h): 

V4 = v„ + {dV/dz)M-h + \/2\-((? V/fe2)A()-h
2 + ... (7) 

• for the node A5 (x() - h, yo. z0): 

V, = V„ - (f1VMx)A0-h + 1 /2!'(rfV/Ox2)«,-!!2 - ... (8) 
• for the node A, (x» + li, y(i, z,,): 

Vfi - V„ + (dV/<k)MA\ + l/2!-(tf V/<9x2)Ao-h2 + ... (9) 

From relations 5 -H 10 we have: 

V, + V2 +V, +V., + Vs +Vfi = 6 V« + (<?V/dx2+(?V/dy2+diV/<')z2)Mf\\2 = 6 V0 + AV-h2    (11) 

Taking into account equation (2) for a Laplace field, we have: 

V, + V2 +V; +V4 +V5 +V6 - 6 V„ = 0 (12) 

Similarly (for any point of the network) the following relation holds: 

Vx„. yo -  1. ZO  +VX„. y„. Z» -  I   +VX(1. v„. 7„  +VX„. y„. z„  .   1   +VX„ - |. y„. Z.)  +VX„  ■   1. y(). ZO"6   Vx0. y„. z„  =  0(13) 

These two expressions (12 & 13) are an approximation with finite differences of the Laplace's 
equation (AV = 0), in seven nodes of the 3D space; the order of the error magnitude is of zero. 
Equation (13) is further iterated lor each inner node of the chosen domain. In particular, for the 
domain shown in fig.2 a system of 96 linear algebraic equations with 96 unknown variables was 
found out. By solving the system the digital approximation of the electric potential function V(x, 

y, z), x, y, z eO|, is obtained. 

3. CONCLUSIONS 

The computation of the potential values on the entire immersed hull of a sea-going ship or in a 
volume around it, is a problem of considerable concern (e.g. to obtain information about the 
electrochemical corrosion gradient). 
The proposed method has two stages as following: 
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an experimental stage - the measured of the potential values, which will form the boundary 
conditions of Dirichlet type problem for the following computation stage, and will validate 
the computation as well 
a computation stage - to determine the potential values inside the considered volume 
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