

R O M A N I A
MINISTRY OF NATIONAL DEFENCE

Military Technical Academy

TTHHEE 3311SSTT IINNTTEERRNNAATTIIOONNAALLLLYY AATTTTEENNDDEEDD
SSCCIIEENNTTIIFFIICC CCOONNFFEERREENNCCEE

““MMOODDEERRNN TTEECCHHNNOOLLOOGGIIEESS IINN TTHHEE XXXXII CCEENNTTUURRYY””

 Bucharest 03-04 November 2005

12.66

VIRTUAL PRIVATE NETWORKS POWERED BY ELLIPTIC
CURVE CRYPTOGRAPHY

Eugen Petac∗

Tudor Udrescu∗∗

This article studies the impact of the implementation of Elliptic Curve Cryptography (ECC)
into open-source software, and presents a user-friendly configuration tool that can be used to
deploy an ECC-powered Virtual Private Network.

1. Introduction

 Elliptic Curve Cryptography (ECC) is fast becoming a viable alternative to traditional
public-key cryptosystems (RSA, DSA, DH). Although ECC algorithms have been available
for quite some time, most of the work in this field has been theoretical in nature, with few
actual implementations.
 This situation has changed because of two factors. One is that processing power itself
is increasing and hackers have more resources available to them than ever before. Although
1024-bit RSA keys are the most commonly used keys today, employment of 2048-bit keys is
becoming more and more widespread. With the current rate of development for the IT
infrastructure and machines, 10.000-bit keys are going to be needed in order to maintain the
same level of security. The increase in key size, makes it impracticable to integrate traditional
public-key cryptosystems into mobile/wireless devices, which are typically limited in terms of
computational power, memory or network connectivity.
 The alternative is to use encryption based on elliptic curves. One of the major
advantages of ECC is that it offers equivalent security with RSA but uses smaller key sizes.
For example, a 224-bit ECC key offers the same level of protection as a 2048-bit RSA key.
This leads to increased performance in Internet communication because of faster computation
times and less bandwidth being used[1].
 Another reason is growing acceptance of ECC as an industry standard, which has been
reflected in the work of the Internet Engineering Task Force (IETF). Elliptic Curve
Cryptography can now be found in the RFCs for all the key Internet security protocols:
SSL/TLS, IPSec, PKIX and S/MIME. This paper focuses on the support for ECC present in
Secure Sockets Layer protocol, particularly in the OpenSSL toolkit.

 Another technology that is gaining in popularity with small and medium size
companies as well as universities, is VPN (Virtual Private Networks). These institutions are
frequently unable, or unwilling to invest in a commercial VPN solution but still have a need
for secure communication channels between different sites they posses. One solution is the

deployment of open-source software. Most of the open-source VPN implementations use
either the IPSec protocol (OpenSwan, FreeS/WAN, KAME) or the SSL protocol (OpenVPN).
 Unfortunately, the availability of non-commercial VPN-ECC solutions still leaves
much to be desired. Currently, open-source IPSec implementations like OpenSwan support
only a few of the so called “Oakley Groups” as specified in RFC 2409 (groups 2 and 5 which
are defined modulo primes of various length). No groups defined using elliptic curves are
supported. Commercial vendors like Cisco and Nortel all support ECDH (Elliptic Curve
Diffie Hellman) for key exchange in their gateways, but the financial cost associated with
these products is high.
 With regards to the SSL/TLS (Secure Sockets Layer/Transport Layer Security)
protocol, things are much brighter for the open-source community. Sun Microsystems is
promoting the adoption of ECC into the IETF standards for TLS, and has donated an ECC
implementation to the OpenSSL Project, which is a general purpose cryptography library.
OpenSSL now provides an implementation for the ECDH algorithm for key agreement in a
TLS handshake and for the ECDSA (Elliptic Curve Digital Signature Algorithm) as an
authentication mechanism. The SSL-based VPN solutions are particularly attractive as they
are easier to setup and can tunnel traffic over a single UDP or TCP port making the
configuration of the firewall a trivial matter. OpenVPN can use all of the encryption,
authentication, and certification features of the OpenSSL library to protect private network
traffic as it transits the Internet [2]. Thus, with the addition of ECC capabilities to OpenSSL,
this can be used in conjunction with OpenVPN to provide a powerful and low-cost VPN
solution which can accommodate a wide range of configurations, including remote access,
site-to-site VPNs and WiFi security.
 As an increasing number of users grow more sensitive to security and privacy
concerns, closer integration of different open-source technologies like OpenSSL and
OpenVPN is needed to provide easy access to efficient cryptographic techniques like ECC.
To facilitate integration and deployment of these technologies over the industry and the
academic world, we have developed an easy-to-use tool, that enables an user with limited
skills to create an ECC-enabled VPN.

2. SSL Overview

 Secure Sockets Layer [2] is the dominant security protocol on the Internet today. Like
most Internet security protocols, SSL employs a public-key cryptosystem to derive
symmetric-keys and then uses fast symmetric-key algorithms to offer encryption, source
authentication and integrity protection for data exchanged over insecure, public networks.
One of the major strengths of SSL, is its ability to use a variety of different cryptographic
algorithms for key agreement, symmetric encryption and hashing. Although, we can use any
combination of cryptographic algorithms, it is strongly recommended we use so called cipher
suites, which are well tested combinations. For example, the cipher suite RSA-RC4-SHA
contains RSA as the key exchange mechanism, RC4 for symmetric encryption and SHA as
the hash function. Due to significant advances in cryptanalysis and computing power
available to potential intruders, in the future, both symmetric and public key-sizes must grow
from current levels in order to ensure the same security as today. Because public-key
cryptographic operations are the most computationally expensive part of an SSL transaction, a
replacement for RSA must be found. As shown in Table 1 [3], Elliptic Curve Cryptography
offers a significant strength per bit when compared to RSA. The table contains the equivalent
key sizes for symmetric algorithms, ECC and RSA, as well as the key size ratio between
traditional public-cryptosystems and elliptic curve based cryptosystems.

12.67

Symmetric ECC RSA Key size ratio
56 112 512 5:1
80 163 1024 6:1
112 224 2048 9:1
128 256 3072 12:1
192 384 7680 20:1
256 512 15360 30:1

Table 1 : Computationally equivalent key sizes

 Due to the use of smaller keys for equivalent security levels, ECC is especially suited
for implementation in mobile/wireless devices, where power, bandwidth and CPU are
constrained. Applications like online banking or secure wireless communications, that make
use of digital signatures and authentication, also benefit from the reduction in key sizes.

 3. ECC Overview

 The application of elliptic curves in cryptography was first proposed in 1985
independently by Neal Koblitz [4] from the University of Washington, and Victor Miller [5]
from IBM. Many cryptosystems require the use of algebraic groups. Elliptic curves can be
used to form elliptic curve groups, where the elements of the group are points on an elliptic
curve. The introduction of more stringent properties for the elements of the group, such as
limiting the number of points on such a curve, creates an underlying field for the elliptic curve
group. In practice, Elliptic Curve Cryptosystems operate over Fp fields (where p is a prime)
and F2

m fields (a binary representation with 2m elements). The core of elliptic curve arithmetic
is the operation called scalar point multiplication, which computes Q = kP, where Q is a point
on the curve obtained by multiplying k times another point P, also on the curve. Scalar
multiplication is performed by a combination of point-additions (defined as the operation of
adding two distinct points together) and point-doublings (which add two copies of a point
together) [6]. Both point-additions and point doublings can be implemented very efficiently
both in software and in hardware.
 At the foundation of every cryptosystem is a hard mathematical problem that is
computationally unfeasible to solve. For instance, RSA relies on the problem of integer
factorization, while Diffie-Hellman uses the discrete logarithm problem. Unlike these
cryptosystems which operate over integer fields, the Elliptic Curve Cryptosystems operate
over points on an elliptic curve and rely upon the difficulty of the Elliptic Curve Discrete
Logarithm Problem (ECDLP). This problem states that given two points on the elliptic curve,
P and Q =kP, it is computationally unfeasible to find k. An Elliptic Curve Cryptosystem is
made up of domain parameters for the elliptic curve. Besides the curve equation, one of the
most important elliptic curve parameters is the base point G, which is fixed for each curve. By
multiplying the curve’s base point G with k, we obtain the point Q which is the public key.
The private key is represented by k, which is a large random integer.
 A variety of attacks against Elliptic Curve Cryptosystems like Pollard rho or Pohlig-
Hellman [7], have been devised. Their efficiency varies depending on the choice of the
elliptic curves. To guarantee a high level of security, only curves recommended by standards
organizations like NIST should be used.
 Elliptic Curve Diffie Hellman (ECDH) and Elliptic Curve Digital Siganture
Algorithm(ECDSA) are the elliptic curve counterparts of the Diffie-Hellman key exchange
and Digital Signature Algorithm, respectively. Figure 1 provides a description of the ECDH
key agreement between two users, Alice and Bob.

12.68

Fig 1 : ECDH key agreement

 The two users generate their respective private keys, kA and kB and corresponding
public keys QA= kAG and QB= kBG , where G is the base point of the elliptic curve they have
agreed to use. The parties then exchange their public keys, and compute the shared secret by
multiplying their own private key with the other’s public key.

4. Public-key cryptography in SSL

 The SSL/TLS protocol is composed of several specialized protocols, with the
Handshake protocol and the Record protocol being the most important. SSL Handshake is
responsible for the establishment of a SSL session between the client and the server, allowing
the two parties to negotiate a common cipher suite, authenticate each other, and derive a
shared master secret using public-key cryptographic algorithms. The SSL Record protocol
derives symmetric keys from the master secret and uses fast symmetric encryption algorithms
for the bulk encryption and authentication of application data.
 The most computationally expensive part of an SSL transaction, is represented by the
public-key cryptographic operations. Once a master secret has been derived, it can be re-used,
resulting in a abbreviated handshake that does not contain any public-key cryptographic
operations. A client and server must always perform a full-handshake on their first interaction.
Figure 2 shows the operation of an ECC-based SSL handshake, as specified in [3].

Fig. 2 : ECC-based SSL Handshake

 There are two variants of the ECDH-ECDSA handshake. The first one doesn’t use
client authentication. In this case, the client performs an ECDSA verification to check the
server's ECDSA certificate and then an ECDH operation using its private ECDH key and the

12.69

server's public ECDH key to compute the shared pre-master. The server only performs an
ECDH operation to arrive at the same secret [7].
 When client authentication is used, the actual messages being exchanged are
dependent on the type of authentication requested by the server and the kind of certificate the
client posses. If the client uses an ECDH certificate, both sides perform an ECDSA
verification on the other's certificate followed by an ECDH operation to compute the pre-
master secret. If the client uses an ECDSA certificate, the operations required on the two sides
are asymmetric. The client performs an ECDSA verification of the server's certificate, an
ECDH operation to compute the pre-master secret and an ECDSA signature to generate the
CertificateVerify message. The server performs an ECDH operation to compute the pre-
master secret and two ECDSA verifications (one to verify the client's certificate and another
to verify the CertificateVerify message) [7].

5. Performance evaluation and analysis

 In order to evaluate the performance of an ECC-powered VPN, we used the built-in
speed program from the OpenSSL toolkit. Table 2 shows the measured performance for RSA,
ECDH and ECDSA public-key operations on a platform equipped with a 1.5 Ghz AMD
Athlon processor. The top row shows the time needed for one primitive public-key operation
for 1024-bit RSA and 163-bit ECC, whereas the bottom row displays the time for 2048-bit
RSA and 192-bit ECC [7]. The values listed are in milliseconds.

RSAencrypt,verify RSAdecrypt,sign ECDSAverify ECDSAsign ECDHop
0.2 4.7 3.0 0.6 2.6
0.7 24.6 6.2 2.9 3.0
Table 2. Measured performance of public-key operations (in milliseconds)

 Next, we used these values to compare the performance of RSA and ECC SSL-
handshakes. The metric used was the Handshake Crypto Latency, defined as the total amount
of time spent on performing cryptographic operations on the client and on the server [7].
Figure 3 illustrates the impact of using higher key sizes on an SSL handshake. It is clear that
the performance advantage of ECC over RSA increases at higher key sizes. While the latency
for 1024-bit RSA is better than that for 163-bit ECC, in the case of 2048-bit RSA, things are
different, and ECC is up to 3 times faster.

Fig.3 : Impact of using higher key sizes

12.70

6. Implementation of an ECC-powered VPN

 In order to implement an open-source ECC-powered VPN, we developed an
application stack and an installation methodology. The application stack consisted of an ECC-
enabled version of the OpenSSL cryptographic library with support for ECDH and ECDSA,
the latest version of OpenVPN, the LZO data compression library, and a configuration utility
specially developed for the project. The installation procedure was successfully tested on
several Linux distributions (RedHat 9, Ubuntu 5.04, Fedora Core 2) and should, with minor
modifications, work on other distributions as well. Because the configuration utility was
developed using Java, a version of the Java 2 platform for Linux greater than 1.4.2 must also
be installed on the target machine. We tested the operation of the VPN first in a laboratory
environment inside Ovidius University of Constanta, and then by creating a VPN between the
University and an offsite location. We also simulated multiple clients that were accessing the
internal university network using the VPN gateway we had set up, thus demonstrating the
feasibility of deploying this open-source solution to give faculty staff and students access to
internal resources. During tests, the encrypted tunnel proved stable.
 Because the open-source solution is made up of several independent components, that
are developed separately, their integration and successful configuration requires considerable
skills. To simplify the process of establishing an encrypted tunnel, we have developed a
configuration utility for VPNs based on the SSL protocol.

Fig. 4 : Configuration utility screenshot

7. Conclusions

 The performance analysis and the tests carried out, suggest that the use of ECC cipher
suites can offer significant performance benefits to VPNs especially as security needs
increase. We have completed implementing an application stack that can be used to deploy an
open-source VPN solution and we are in the process of setting up a fully integrated VPN
package that would simplify further the installation and configuration of virtual private
network. As soon as support for ECC is available in other open-source VPN software, we

12.71

intend to investigate the performance and impact of using ECC-based cipher suites in these
protocols and compare the results with those obtained for the SSL protocol.

 References

[1]. V. Gupta, D. Stebila, S. Fung, S. Chang, N. Gura, H. Eberle. “Speeding up Secure
 Web Transactions using Elliptic Curve Cryptography“. 11th Ann. Symp. on Network
 and Distributed System Security — NDSS 2004, Internet Society, February 2004
[2]. A. Frier, P. Karlton, P. Kocher, “The SSL Protocol Version 3.0”,
 http://home.netscape.com/eng/ssl3
[3]. V. Gupta, S. Blake-Wilson, B. Moeller, C. Hawk, “ECC Cipher Suites for TLS”, IETF
 internet draft <draft-ietf- tls-ecc-05.txt>, Jan. 2004.
[4]. N. Koblitz, “Elliptic curve cryptosystems”, Mathematics of Computation, 48:203-209,
 1987.
[5]. V. Miller, “Uses of elliptic curves in cryptography”, Lectures Notes in Computer
 Science 218: Advances in Cryptology – CRYPTO `85, pages 417-426, Springer-Verlag,
 Berlin, 1986
[6]. Elliptic Curve Cryptography, Certicom Research, www.certicom.com
[7]. Performance Analysis of Elliptic Curve Cryptography for SSL, ACM Workshop on
 Wireless Security (WiSe), Mobicom 2002, Atlanta, Sept. 2002
[8]. Code&Cypher Vol. 1, no. 4 , www.certicom.com/codeandcipher, Certicom’s Bulletin
 of Security and Cryptography, 2004.
[9]. OpenSSL Project, http://www.openssl.org
[10]. OpenVPN, http://openvpn.net/
[11]. Next Generation Crypto, http://research.sun.com/projects/crypto

* Associate Professor Engineer, “Ovidius” University Constanta, Faculty of Mathematics and Informatics, 124
Av. Mamaia, e-mail: epetac@univ-ovidius.ro
** Research Assistant, “Ovidius” University Constanta, Faculty of Mathematics and Informatics, 124 Av.
Mamaia, e-mail: tudrescu@univ-ovidius.ro

12.72

http://www.isoc.org/isoc/conferences/ndss/04/
http://www.isoc.org/isoc/conferences/ndss/04/
http://home.netscape.com/eng/ssl3
http://www.certicom.com/
http://www.certicom.com/codeandcipher
http://www.openssl.org/
http://openvpn.net/
http://research.sun.com/projects/crypto

